Reduction formulae from the factorization Theorem of Littlewood-Richardson polynomials by King, Tollu and Toumazet
نویسندگان
چکیده
The factorization theorem by King, Tollu and Toumazet gives four different reduction formulae of LittlewoodRichardson coefficients. One of them is the classical reduction formula of the first type while others are new. Moreover, the classical reduction formula of the second type is not a special case of KTT theorem. We give combinatorial proofs of reduction formulae in terms of tableaux or hives. The proofs for the cases r = 1, 2, n − 2 in terms of tableaux and the proof for the classical reduction formula of the second type in terms of hives are new. Résumé. Le Théorème de factorisation par King, Tollu, et Toumazet donne quatre formules différentes de réduction des coefficients de Littlewood-Richardson. L’une d’entre eux est la formule classique de réduction du premier type alors que les trois autres sont nouvelles. De plus, la formule classique de réduction du deuxième type n’est pas un cas spécial du KTT théorème. Nous donnons preuves combinatoires des formules de réduction en termes de tableaux ou hives. Les preuves pour les cas r = 1, 2, n − 2 en termes de tableaux et la preuve pour la formule classique de réduction du deuxieme type en termes de hives sont nouvelles.
منابع مشابه
An Extension of Reduction Formula for Littlewood-richardson Coefficients
There is a well-known classical reduction formula by Griffiths and Harris for Littlewood-Richardson coefficients, which reduces one part from each partition. In this article, we consider an extension of the reduction formula reducing two parts from each partition. This extension is a special case of the factorization theorem of Littlewood-Richardson coefficients by King, Tollu, and Toumazet (th...
متن کاملA polynomiality property for Littlewood-Richardson coefficients
We present a polynomiality property of the Littlewood-Richardson coefficients c λμ . The coefficients are shown to be given by polynomials in λ, μ and ν on the cones of the chamber complex of a vector partition function. We give bounds on the degree of the polynomials depending on the maximum allowed number of parts of the partitions λ, μ and ν. We first express the Littlewood-Richardson coeffi...
متن کاملReduction Rules for Littlewood-richardson Coefficients
Let G be a semisimple algebraic group over an algebraically-closed field of characteristic zero. In this note we show that every regular face of the Littlewood-Richardson cone of G gives rise to a reduction rule: a rule which, given a problem “on that face” of computing the multiplicity of an irreducible component in a tensor product, reduces it to a similar problem on a group G of smaller rank...
متن کاملSmall Littlewood-Richardson coefficients
We develop structural insights into the Littlewood-Richardson graph, whose number of vertices equals the Littlewood-Richardson coefficient cνλ,μ for given partitions λ, μ and ν. This graph was first introduced in [BI12], where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood-Richardson coefficient: We design an algorithm for the exa...
متن کاملDegrees of Stretched Kostka Coefficients
Given a partition λ and a composition β, the stretched Kostka coefficient Kλβ(n) is the map n 7→ Knλ,nβ sending each positive integer n to the Kostka coefficient indexed by nλ and nβ. Derksen and Weyman [DW02] have shown that stretched Kostka coefficients are polynomial functions of n. King, Tollu, and Toumazet have conjectured that these polynomials always have nonnegative coefficients [KTT04]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008